
Quiz #7: Analysis of Algorithms/Complexity Classes ICS-33 Spring 2022

IMPORTANT: Go to Gradescope and download the Quiz7 pdf file: print it, fill it in, and submit it!
Do not fill in these pages!
When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed.
There is no helper project file for this assignment. Submit your completed written quiz by 11:30pm on Friday
(there is an In-Lab Exam on Thursday, so the due date is Friday). I will post my solutions to EEE reachable via
the Solutions link on Saturday.

1. (3 pts) Sketch approximate Size vs. Time curves for the two algorithmic complexity classes required in each of the pictures
below: for one, write Impossible instead: (a) an O(N) algorithm that is always faster than an O(N2) algorithm. (b) an O(N)
algorithm that is never faster than an O(N2) algorithm. (c) an O(N) algorithm that is sometimes faster than an O(N2) algorithm.

2. (2 pts) Assume that a function s is in the complexity class O(𝑵𝑵√𝑵𝑵). (a) What is its doubling-signature:
how much more time (by what factor) does it take to solve a problem twice as large? Show your
calculation and simplification to a numerical answer. (b) Briefly explain why it makes little sense for an
algorithm to be in the complexity class O(1/n)?
3. (6 pts) Assume that functions f1 and f2 compute the same result by processing the same argument. Empirically we
find that Tf1(N) = 10 N log2 N and Tf2(N) = 90N where the times are in seconds. (a) Solve algebraically for what size N
these two functions would take the same amount of time, showing how you calculated your answer. (b) for what size
arguments is it better to use f1? f2? (c) Briefly describe how we can write a simple function f that runs as fast as the
fastest of f1 and f2 for all size inputs. (d1) What exact integer value N (±1) solves 𝟐𝟐𝟐𝟐√𝑵𝑵 = 10 (Log2 N2) + 10,000?
Use a calculator, spreadsheet, or a program to guess and refine your answer (try plotting values to see where the
curves meet). Your answer should be correct for all digits up to the ones-place: e.g., a number like 23,728. (d2)
Based on your calculation, which complexity class 𝑶𝑶(√𝑵𝑵) or O(Log2 N2) grows more slowly; justify why?

4. (6 pts) The following two functions each determine the distance between the two closest values in list l,
with len(l) = N. (a) Write the complexity class of each statement in the box on its right. (b) Write the full
calculation that computes the complexity class for the entire function. (c) Simplify what you wrote in (b).
def closest(l:[int])->int: def closest(l:[int])->int:

 a = set() a = sorted(l)

 for i in range(len(l)): min = None

 for j in range(len(l)): for i in range(len(a)-1):

 if i != j: if min==None or a[i+1]-a[i]<min:

 a.add(abs(l[i]-l[j])) min = a[i+1]-a[i]

 return min(a) return min;

(a)

Time

Size
(b)

Time

Size
(c)

Time

Size

5. (5 pts) Assume that function f is in the complexity class O(N2 (log2 N)), and that for N = 1,000 the program
runs in 10 seconds.
(1) Write a formula, T(N) that computes the approximate time that it takes to run f for any input of size N.
Show your work/calculations by hand, approximating logarithms, then finish/simplify all the arithmetic.

 (2) Compute how long it will take to run when N = 1,000,000 (which is also written 106). Show your
work/calculations by hand, approximating logarithms, finish/simplify all the arithmetic. Compute the final
result (time) not in seconds but in days.
6. (3 pts) Assume that we have recorded the following data when timing three methods (measured in
milliseconds). Based on these times (which are measured and therefore approximate, so don’t expect perfect
results), fill in an estimate for the complexity class (one of the standard ones) for each method and fill in an
estimate for the running time when N = 1,600.

 N Time: Method 1 Time: Method 2 Time: Method 3

100 300 20 20

200 604 76 22

400 1,196 325 20

800 2,395 1,178 19

1,600
Complexity
Class Estimate

